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Abstract 

The right hemisphere has often been claimed to be a locus for affective prosody, and people with 

right-hemisphere damage (RHD) have often been reported to show impairments in this domain. 

This phenomenon has been primarily investigated in terms of perception, more rarely in terms of 

production, and more rarely still using acoustic analysis. Our goal was to systematically review the 

papers reporting acoustic features of prosodic production in RHD, to identify strengths and 

weaknesses in this field, suggest guidelines for future research, and to support cumulative research 

by estimating the meta-analytic effect size of those features.  We queried PubMed, PsychINFO, 

Web of Science, and Google Scholar, using the following combination of search terms: (prosody 

OR intonation OR inflection OR intensity OR pitch OR fundamental frequency OR speech rate OR 

voice quality) AND (RHD OR right hemisphere) AND (stroke) AND (acoustic). Standardized mean 

differences were extracted from all papers meeting inclusion criteria, and aggregated effect sizes 

were estimated using hierarchical Bayesian regression models. Sixteen papers met our inclusion 

criteria. We did not find strong evidence in the literature to indicate that the prosodic productions of 

people with RHD is substantially different from that of NBD controls, when measured in terms of 

acoustic features. However, the acoustic features of productions by people with RHD did differ 

from those of participants with NBD and LHD in some ways, notably in F0 variation and pause 

duration. Prosody type (emotional vs. linguistic) had very little effect. Taken together, currently 

available data show only a weak effect of RHD on prosody production. However, more accurate 

analyses are hindered by small sample sizes, lack of detail on lesion location, and divergent 

measuring techniques. Cumulative open science practices are recommended to overcome these 

issues. 
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1. Introduction 

Speakers modulate their tone of voice to add important nuance to their words. This could range from 

changes of emphasis which carry lexical distinctions (e.g. a hotdog vs. a hot dog) or syntactic 

distinctions (e.g. a terminal upward inflection to indicate a question) to an overall colouring of tone 

indicating emotion or a particular attitude toward the uttered words (e.g. anger, sarcasm, amusement, 

etc.). Since the 19th century, clinicians have recognized that the loss of this ability can have important 
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implications for communication (Hughlings Jackson, 1879), and since the early 20th century, 

researchers have attempted to identify and classify the various types of disordered prosody (Monrad-

Krohn, 1957; Monrad-Krohn, 1947). In the later 20th century, perhaps in conjunction with a general 

upsurge of interest in communication deficits following damage to the brain's right hemisphere 

(Gardner, 1994; Myers, 1999; Tompkins, 1995; Winner, Brownell, Happé, Blum, & Pincus, 1998), 

attention turned to the right hemisphere as a potential neural locus of at least some aspects of prosody, 

with Ross in particular (Gorelick & Ross, 1987; Ross, Harney, & Purdy, 1981; Ross & Mesulam, 

1979; Ross, Thompson, & Yenkosky, 1997) describing several patients whose prosody became 

“monotone” following damage to the right hemisphere, and proposing that affective prosody might 

be a dominant language function of the right hemisphere. One particular case described by Ross and 

Mesulam (Ross & Mesulam, 1979) was that of a school teacher who, following a right hemisphere 

stroke, had a “complete inability to express emotion through speech and action,” and who spoke with 

an “asthenic, unmodulated, monotonous voice that was devoid of inflections and coloring” (pg. 144). 

This individual compensated by adding “and I mean it” to the end of sentences to indicate anger (Ross 

& Mesulam, 1979). 

In subsequent years, the right hemisphere has come to be widely associated with prosody, and 

with emotional or affective prosody in particular (Guranski & Podemski, 2015; Patel et al., 2018; 

Leung, Purdy, Tippett, & Leão, 2017). Indeed, Guranski and Podemski (2015) write that the right 

hemisphere is "[...] mostly responsible for speech prosody and its emotional aspects" (pg. 113). The 

focus shifted to the perception of emotional prosody, rather than production (Patel et al., 2018), and 

was reinforced by neuroimaging studies on healthy participants processing emotional prosody, e.g. 

(Baumgaertner, Hartwigsen, & Roman Siebner, 2013). Even the occasional studies including a 

production component did not typically consider the acoustic properties of production, but rather 

measured prosody using hearer judgments, e.g (Brådvik et al., 1991).  

Despite the reported case studies, and the general acceptance that the right hemisphere has a 

special role to play in prosody processing, no comprehensive systematic literature review or meta-

analysis yet exists on the role of the right hemisphere in prosodic processing in general, or even in 

production specifically. The present study takes a first step in this direction by carrying out the first 

systematic review and meta-analysis of studies using acoustic measures of prosodic production in 

people with right hemisphere damage (RHD). The goal is to identify strength and weaknesses in 

this field and thereby guidelines for future research, as well as to support cumulative research by 

estimating meta-analytic effect size of those features. 
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In studies using hearer judgments to assess prosodic production, patients are asked to e.g. 

produce either compound nouns or noun phrases (hotdog vs. hot dog). Raters then listen to these 

productions, and classify them as either a compound noun or noun phrase (e.g. Balan & Gandour, 

1999). Similar procedures are used for emotional prosody, e.g. in Gandour, Larsen, Dechongkit, 

Ponglorpisit, & Khunadorn (1995), in which raters circled happy, sad, or neutral smileys to classify 

patient productions. Studies using acoustic measures, in contrast, extract features directly from the 

recorded speech signal. These physical characteristics of the speech signal are experienced by the 

listener as elements of prosody. Acoustic features include fundamental frequency (pitch), intensity 

(loudness), and duration measures (pauses and rhythm). 

We have chosen to focus on acoustic measures because we believe these to be the most 

promising means currently available for assessing prosody in speech production. We are not alone in 

this: previous reviews on perceptually assessed prosodic patterns in Autism Spectrum Disorder and 

Schizophrenia have suggested moving toward acoustic analyses, in order to provide more objective 

and mechanistic descriptions of the prosodic atypicalities in these disorders (Fusaroli, Lambrechts, 

Bang, Bowler, & Gaigg, 2017; Hoekert, Kahn, Pijnenborg, & Aleman, 2007; McCann & Peppé, 2003; 

Parola, Simonsen, Bliksted, & Fusaroli, 2019). This is not to suggest that studies based on hearer 

judgements are not valid or useful. Indeed, we believe that hearer judgments do provide an important 

source of information, as they allow us to quantify the subjective impression that a person's speech 

makes on a listener. Insofar as atypical speech patterns can be considered an impairment at all, it is 

only to the extent to which they hinder the hearer's ability to quickly and accurately comprehend the 

intended message of the speaker, build rapport with the speaker, and coordinate the flow of the 

conversation. These can be better assessed through hearer judgments, or by other means which reflect 

the effect of the acoustic cues on the hearer or the conversation. However, hearer judgements are also 

limited in several respects: 

 

(1) The data generated by hearer judgements tends to be categorical, or at the very least ordinal. 

Acoustic measures are continuous, allowing for more sensitive analysis methods (Bürkner & 

Vuorre, 2018). 

(2) Hearer judgments synthesize potentially many separate acoustic cues into a single measure. 

As an example, many different acoustic features may contribute to an overall "monotone" 

quality of speech, but the specific features may differ from speaker to speaker (Forbes-Riley 

& Litman, 2004; Liscombe, Venditti, & Hirschberg, 2003). 
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(3) Acoustic analysis of speech offers many more potential measures than ratings-based 

judgements. For example, a commonly used suite (COVAREP) provides 82 out-of-the-box 

acoustic measures, which have been repeatedly demonstrated to be useful for describing 

voice patterns (Degottex, Kane, Drugman, Raitio, & Scherer, 2014). These measures – when 

coupled with conservative statistics to avoid overfitting - may help better characterize subtle 

differences in speech patterns. 

(4) Hearer judgments do not scale well. While it is possible to ask raters to judge the speech of a 

small sample of participants, as data-sets become larger and more openly shared (e.g. at 

https://rhd.talkbank.org (Macwhinney, Fromm, Forbes, & Holland, 2011)), it is increasingly 

important to develop replicable methods for extracting measures from many sound files in a 

uniform fashion. Using standardized, freely-available tools and providing analysis code 

allows researchers to more easily build upon each other's work. 

 

Although we have chosen to focus on studies using acoustic measures to assess prosody production, 

there is increasing interest in combining hearer judgments and acoustic measures to identify 

acoustic correlates of perceived prosody (e.g. Jiam, Caldwell, Deroche, Chatterjee, & Limb, 2017; 

Moriarty, Vigeant, Liu, Gilmore, & Cole, 2018; Stoop et al., 2018), and we believe this method 

holds promise for work on prosody in clinical populations as well. 

The aim of the current meta-analysis is to assess whether, and to what degree, acoustic 

features of the speech of people with RHD differ from those same features in the speech of non-

brain-damaged (NBD) controls, by drawing on currently available results in the literature. 

 

2. Methods 

 

2.1 Literature search 

To obtain the most comprehensive database of peer-reviewed results possible, we conducted a 

systematic literature search. We queried PubMed, PsychINFO, Web of Science, and Google Scholar, 

using the following combination of search terms: (prosody OR intonation OR inflection OR intensity 

OR pitch OR fundamental frequency OR speech rate OR voice quality) AND (RHD OR right 

hemisphere) AND (stroke) AND (acoustic), with no restrictions on date of publication. Further papers 
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were identified by searching the references in the papers identified by the initial search. Our search 

resulted in a total of 49 papers. 

 

2.2 Inclusion criteria 

Our initial list of 49 papers was then screened, and we included only papers meeting the following 

criteria: 

 

(1) The study quantified acoustic measures of vocal production of participants with RHD 

(2) The study reported original research (not a review) 

(3) The study included data from at least two participants 

(4) The study included a control group 

 

Of the initial 49 papers, 8 were case studies with data from only one individual, 6 did not report 

sufficient data in either tables or plots for inclusion in a meta-analysis, 2 papers did not report data 

from an acoustic analysis, 2 papers lacked a control group, 11 papers did not measure vocal 

production, 2 did not include participants with RHD, 1 did not report original data (review article), 

and 1 only included RHD participants who were actively selected to differ from NBD controls. 

Although this final paper otherwise met our inclusion criteria, we felt that actively choosing patients 

who differed from the control group on the object of study introduced unnecessary bias, and we did 

not include it. We note in passing that the effect sizes for this paper (which measured variation in 

F0) were somewhat larger (Hedges’s g = 1.3 – 1.8) than many of the included papers, although not 

unlike the effect size in a paper with the same first author which was included (Ross & Monnot, 

2008).  After these 33 papers were excluded, 16 papers remained for analysis. Full details on these 

papers and the features measured can be found in the data-table archived at: 

https://osf.io/2g8fr/?view_only=81ffc526d83c4389b5b4fc073c2c922a. 

 

2.3 Data extraction 

The elementary acoustic features usually argued to support prosody are fundamental frequency (F0), 

intensity, and duration (Fusaroli et al., 2017; Jiam et al., 2017; Peppé, 2009). These acoustic features 

are interpreted by the hearer as pitch, loudness, and rhythm or timing. Reported data on any of these 

features were extracted for our analysis. In many cases, these data could be easily extracted from 

tables published in the articles. In some cases, sufficient data were not available in table format, but 
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could be digitally extracted from published plots using the application WebPlotDigitzer (Rohatgi, 

2014). In one case, a printing error had resulted in published data tables which were clearly incorrect; 

in this case, the authors were contacted and kindly provided the correct data. Because lesion location 

was either unreported or was reported as a mix of varied cortical and subcortical damage, there was 

insufficient data to include lesion location as a predictor in our models. When papers also reported 

results for participants with left-hemisphere damage (LHD) these were also extracted. 

 

2.4 Meta-analysis 

Meta-analyses were performed following well-established random- and mixed-effects procedures 

detailed in Doebler & Holling (2015); Field & Gillett (2010); Quintana (2015); and Viechtbauer 

(2010) complemented – in the inference of the effects - by a Bayesian framework (Williams, Rast, & 

Bürkner, 2018).  To estimate the differences between individuals with RHD and non-brain-damaged 

(NBD) controls, we extracted the standardized mean difference (Hedges’ g (Borenstein, Hedges, 

Higgins, & Rothstein, 2011; Cohen, 1988)). When papers reported data from more than one measure 

of the same variable, each measure was entered separately into the calculation. We refer to these 

multiple measurements of the same variable as “studies”, while the publications they are reported in 

we refer to as either “articles” or “papers”.  

The standardized mean differences were analysed using 2-level hierarchical Bayesian 

regression models to estimate the pooled effect sizes and corresponding credible (i.e., Bayesian 

confidence) intervals. This multilevel structure allowed us to explicitly model the heterogeneity (or 

s2) in the results of the studies analysed. By including a random effect by study, we both accounted 

for repeated measures and assumed that the variability in experimental design, acoustic analyses, and 

population samples might generate heterogeneous findings, and allowed the model to estimate such 

heterogeneity (Hedges, Tipton, & Johnson, 2010).  

We then measured and tested for heterogeneity between the studies using the Cochran’s Q 

statistic (Cochran, 1954). Q statistics reveal how much of the overall variance can be attributed to 

true between-study variance. Priors for the Bayesian analyses were chosen to be only weakly 

informative, so that their influence on the meta-analytic estimates were relatively small: a normal 

distribution centred at 0 (no effect), with a standard deviation of 0.5 for the overall effect, and a 

positive truncated normal distribution centred at 0, with a standard deviation of 0.5 for the 

heterogeneity of effects (standard deviation of random effects). We report 95% credible intervals 

(CIs), evidence ratios and credibility scores. CIs are the intervals within which there is a 95% 
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probability that the true value of the parameter (e.g. effect size) is contained, given the assumptions 

of the model. In the present analysis, the evidence ratio quantifies evidence in favour of the effect of 

diagnosis or of acoustic feature (e.g. longer pauses in RHD compared to NBD) and provides the ratio 

of likelihood between this effect and the alternatives (e.g. same length or shorter pauses in RHD). An 

evidence ratio equal to 3 indicates the hypothesis is 3 times more likely than the alternative. A 

common interpretation of evidence ratios, proposed by Wetzels and Wagenmakers (2012) and based 

on work by Jeffreys (1998) and Kass and Raftery (1995), is as follows: 1–3 = anecdotal; 3–10 = 

substantial; 10–30 = strong). 

A credibility score indicates the percentage of posterior estimates falling above 0. Because 

Bayesian methods are less commonly used and understood, we also report p-values in order to reach 

a broader audience. Note that the p-values are calculated on the same 2-level hierarchical model as 

the Bayesian inference, with the difference that p-value statistics rely on the equivalent of completely 

flat priors.  

The presence of influential studies is estimated using Cook’s distances, that is, per each study 

we calculate the Mahalanobis distances (Mahalanobis, 1936) between the entire set of predicted 

values and the set of all but the current study. Studies generating a Cook distance above 1 are 

considered influential and the data are subsequently re-analysed excluding all influential studies 

(Cook & Weisberg, 1982; Viechtbauer, 2010).  

 To assess the potential role of prosody type (emotional vs. linguistic prosody) in explaining 

the patterns observed, we built a second 2-level Bayesian model including prosody type as predictor 

of difference in vocal patterns. We then performed a Leave-One-Out-Information-Criterion (loo) 

based model comparison (Vehtari, Gelman, & Gabry, 2017) with the model not including task. We 

report loo stacking weights (Yao, Vehtari, Simpson, & Gelman, 2018) in favour of the model, 

indicating the probability that the model including the variable prosody type is better than baseline. 

 Publication bias was assessed by both visual inspection of asymmetries in the funnel plots, 

and Egger's regression test (Egger, Smith, Schneider, & Minder, 1997). All calculations were carried 

out using the metafor (Viechtbauer, 2010) and brms (Bürkner, 2017a; Bürkner, 2017b) packages for 

R (R Core Team, 2018).  

 Meta-analyses were conducted comparing both participants with RHD to NBD controls and, 

when possible, to participants with LHD. This latter comparison helps identify differences between 

RHD and NBD participants which might simply be the result of any sort of brain damage, irrespective 

of hemisphere. 
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3. Results 

Not all of the extracted features were reported in a sufficient number of papers to make meta-

analysis possible. Meta-analytic comparison between RHD and NBD participants was possible for 

the features F0 variability, Pause Duration, Syllable Duration, and Intensity Duration. These same 

comparisons were also possible between RHD and LHD participants, with the exception of Syllable 

Duration. The main results of the analyses are summarised in Table 1. Below, we look at each of 

these results in more detail. 

 

Feature  Estimated Effect Size  Evidence Ratio  Credibility  p  Sigma2  
RHD vs NBD 

F0 variability  -0.302 (-0.784 0.201)  8.792  90  0.122  0.656 (0.185 1.732)  
Pause Duration  -0.593 (-1.254, -0.002)  39.404  98  0.004  0.371 (0 2.471)  

Syllable Duration  0.009 (-1.525, 1.292)  1.277  56  0.596  2.095 (0.004 16.082)  
Intensity Variation  -2.225 (-9.281, 5.192)  3.422  77  0.317  74.57 (11.129 289.148)  

RHD vs LHD 
F0 variability  0.227 (-0.635 1.119)  2.81  74  0.406  1.04 (0.07 4.293)  

Pause Duration  -0.923 (-2.86 1.619)  9.87  91  0  4.417 (0.001 35.011)  
Syllable Duration  n/a  n/a  n/a  n/a  n/a  
Intensity Variation  -0.684 (-3.08 1.644)  6.067  86  0.003  5.658 (0.002 47.328)  

 
 
 

Table 1: Meta-analytic results for comparisons of RHD vs. NBD and (where possible) RHD vs. 

LHD.  

 

3.1 Variability in Fundamental Frequency (F0) 

The most commonly-studied aspect of prosody in the papers we included in our meta-analysis was 

pitch, in particular pitch variation. As only two studies (Behrens, 1988; Pell, 1999a) reported mean 

F0, and only one study reported measures of pitch contour (Behrens, 1989), there were not sufficient 

data to meaningfully run a meta-analysis on measures of mean pitch or pitch contour. We have made 

these data available, however, in the online data-table: 

https://osf.io/2g8fr/?view_only=81ffc526d83c4389b5b4fc073c2c922a. 

The meta-analysis of variation in F0 included 29 studies (13 articles) for a total of 167 

participants with RHD and 187 comparison participants (Figure 1). Hierarchical Bayesian meta-

analysis revealed an overall estimated difference (Hedges' g) in F0 Variability of -0.302 (95% CI = -

0.784, 0.201), p = 0.122, evidence ratio = 8.792, credibility = 90%) with an overall variance between 
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studies (sigma squared) of 0.656 (95% CI = 0.185, 1.732). The variance in effects between studies 

could not be reduced to random sample variability between studies (Q-stats: 110.478, p = 0). No study 

was found to be influential. The data did not reveal any likely publication bias (Kendall's tau = 0.069, 

p = 0.616). Adding prosody type did not improve the model (Stacking weight: 0%). 

 

 
Figure 1: Estimated effect sizes for variability of F0. Shaded areas indicate the posterior probability 
density of each estimate. Numbers indicate estimated mean difference (Hedge’s g) and upper and 
lower 95% credibility intervals. 
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3.2 Pause Duration 

The meta-analysis of mean pause duration included 7 studies (4 articles) for a total of 28 

participants with RHD and 35 comparison participants (Figure 2). Hierarchical Bayesian meta-

analysis revealed an overall estimated difference (Hedges' g) in Pause Duration of -0.593 (95% CI = 

-1.254, -0.002), p = 0.004, evidence ratio = 39.404, credibility = 98%) with an overall variance 

between studies (sigma squared) of 0.371 (95% CI = 0, 2.471). The variance in effects between 

studies could be reduced to random sample variability between studies (Q-stats: 0.898, p = 0.989). 

No study was found to be influential. The data did not reveal any likely publication bias (Kendall's 

tau = -0.429, p = 0.239). 

 

 
Figure 2: Estimated effect sizes for Pause Duration. Shaded areas indicate the posterior probability 
density of each estimate. Numbers indicate estimated mean difference (Hedge’s g) and upper and 
lower 95% credibility intervals. 
 

 
3.3 Syllable Duration 

The meta-analysis included 13 studies (4 articles) for a total of 32 participants with RHD and 46 

comparison participants (Figure 3). Hierarchical Bayesian meta-analysis revealed an overall 

estimated difference (Hedges' g) in Syllable Duration of 0.009 (95% CI = -1.525, 1.292, p = 0.596, 

−0.593 [−1.254, −0.002]

−0.634 [−1.238, −0.100]

−0.622 [−1.310,  0.032]

−0.541 [−1.065,  0.004]

−0.517 [−1.067,  0.067]

Intercept
−2 0 2

Average

Yang & Sidtis (2016)

Emmorey (1987)

Ouellette & Baum (1994)

Behrens (1988)

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/676734doi: bioRxiv preprint first posted online Jun. 24, 2019; 

http://dx.doi.org/10.1101/676734
http://creativecommons.org/licenses/by-nc-nd/4.0/


evidence ratio = 1.277, credibility = 56%) with an overall variance between studies (sigma squared) 

of 2.095 (95% CI = 0.004, 16.082). The variance in effects between studies could be reduced to 

random sample variability between studies (Q-stats: 11.697, p = 0.47). No study was found to be 

influential. The data revealed a likely publication bias (Kendall's tau = 0.692, p = 0.001). Adding 

prosody type did not improve the model (Stacking weight: 0%). 

 

  
Figure 3: Estimated effect sizes for Syllable Duration. Shaded areas indicate the posterior 
probability density of each estimate. Numbers indicate estimated mean difference (Hedge’s g) and 
upper and lower 95% credibility intervals. 
 

 

3.4 Variability in intensity 

The meta-analysis included 9 studies (5 articles) for a total of 46 participants with RHD and 43 

comparison participants (Figure 4). Hierarchical Bayesian meta-analysis revealed an overall 

estimated difference (Hedges' g) in Intensity Variation of -2.225 (95% CI = -9.281, 5.192, p = 

0.317, evidence ratio = 3.422, credibility = 77%) with an overall variance between studies (sigma 

squared) of 74.57 (95% CI = 11.129, 289.148). The variance in effects between studies could not be 

reduced to random sample variability between studies (Q-stats: 39.182, p = 0). No study was found 
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to be influential. The data did not reveal any likely publication bias (Kendall's tau = 0.111, p = 

0.761). The data did not reveal any likely publication bias (Kendall's tau = 0.111, p = 0.761). 

Adding prosody type to the model credibly improved it (Stacking weight: 100%). Emotional 

prosody showed an effect of 0.22 (95% CI = -17.701, 18.766), while linguistic prosody showed an 

effect of -3.154 (95% CI = -12.297, 6.257), indicating that participants with RHD show slightly 

more variability in intensity than controls when producing emotional prosody, but substantially less 

than controls when producing linguistic prosody. Note that this is due to only one study (Hird & 

Kirsner, 2003) reporting very large effects and should therefore interpreted with much caution. 

 

  
 
Figure 4: Estimated effect sizes for variability for variability of intensity. Shaded areas indicate the 
posterior probability density of each estimate. Numbers indicate estimated mean difference 
(Hedge’s g) and upper and lower 95% credibility intervals. 
 

 

4. Discussion 

The purpose of this meta-analysis was to evaluate to what degree prosody, as measured by acoustic 

analysis, is related to right-hemisphere damage. We extracted data from all available articles 
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comparing data on acoustic measures of pitch, rhythm, and intensity from people with RHD with 

that of NBD controls. Where possible, we have also included data from people with LHD. Taken 

together, the data from acoustic studies reveal some, but not substantial, differences in prosody 

production in people with RHD when compared with NBD controls. Below, we discuss the findings 

and their generalisability, and make recommendations for future studies.  

The most commonly measured feature was pitch variance. We found moderate evidence for 

reduced variation in pitch in people with RHD, and this was not moderated by prosody type 

(linguistic vs emotional). Because the result did not appear to be driven by any particularly 

influential studies, the lack of evidence of publication bias, and the highly credible estimate, we 

suggest that this result is reasonably sound: pitch variation is reduced in people with RHD, although 

the effect is small. While this does support the idea that people with RHD tend to speak in a 

monotone, the meta-analysis also indicated that variation in pitch was essentially the same for 

people with RHD and LHD (in fact, variation was slightly higher for people with RHD, see Table 

1), suggesting that the effect may be due to issues surrounding brain damage in general, and not 

specific to damage to the RH. 

The strongest and most convincing effect was that of pause duration. Although only four 

articles measured pause duration, the results were surprisingly consistent. It is important to note that 

pause duration was very narrowly defined in these articles, and was not entirely consistent. The 

older articles (Behrens, 1988; Emmorey, 1987; Ouellette & Baum, 1994) measured pause duration 

in the context of noun-noun compounds and noun phrases, and defined pause duration as the time 

between the last glottal pulse of the first syllable’s vowel and onset of the second syllable’s vowel. 

Yang and Sidtis (Yang & Van Lancker Sidtis, 2016), in contrast, defined pause duration as the 

percentage of pause duration in the whole sentence in a task involving the production of idiomatic 

vs. literal sentences. No articles reported measures of pause duration in the context of emotional 

prosody. Interestingly, of the papers included in the meta-analysis, only Behrens (Behrens, 1988) 

concludes that participants with RHD use pause differently than that of controls, and Behrens’ 

conclusion is challenged by Ouellette and Baum (Ouellette & Baum, 1994)). The results of the 

meta-analysis suggest that, at least within a narrowly-defined context, pause duration is indeed 

affected in RHD. 

 Not only did the participants with RHD produce shorter pauses than the NBD participants, 

their pauses were also shorter than LHD participants (Table 1). Although the evidence for this 

finding is weaker than that for the comparison of RHD to NBD participants, it is an important 
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finding, as it indicates that the effect seen in participants with RHD is not simply due to brain 

damage in general, but may be particularly pronounced following damage to the right hemisphere. 

This compression of syllables has been earlier described as a “fused” pattern by Kent and Rosenbek 

(1982), who identify the pattern as being typical of both patients with RHD and patients with 

Parkinson’s disease, and describe it as a form of dysarthria. 

We found no evidence for an effect of RHD on vowel or syllable duration when compared 

with NBD controls, with an estimated effect size of essentially zero. This finding should be 

considered in light of the narrow definition used in this analysis. Of the 6 articles that measured 

some aspect of speech duration, several different types of measurement were employed. These 

included measures of utterance length (Gandour et al., 1995; Guranski & Podemski, 2015), 

variability of syllable duration (Yang & Van Lancker Sidtis, 2016), and mean vowel or syllable 

duration (Behrens, 1988; Emmorey, 1987; Pell, 1999b; Yang & Van Lancker Sidtis, 2016). We 

considered these measures too diverse to be meaningfully combined, and of these only vowel or 

syllable duration was represented by enough papers to conduct a meta-analysis. It may well be the 

case that some other measure of duration, e.g. utterance duration or articulation time, would reveal 

an effect.   

Variability of intensity was the only measure of intensity with sufficient data to conduct a 

meta-analysis. We found no evidence of RHD on variability of intensity when compared with NBD 

controls. Interestingly, participants with RHD did show substantially less variation in intensity 

when compared with participants with LHD. At the same time, reported intensity data should 

always be treated with caution, as these measurements can be affected by a variety of factors 

including the choice of microphone, and the distance of the microphone from the speaker. An 

obvious outlier in the intensity data is the study by Hird and Kirsner (2003). This study measured 

the change in intensity between breath groups during informal conversation, unlike e.g. Balan and 

Gandour (1999) who examined intensity changes between syllables in a phonemic stress paradigm, 

with elicited production of noun-noun compounds. 

Although many authors distinguish between linguistic prosody (e.g. using intonation to 

distinguish between noun-noun compounds and noun phrases) and emotional or affective prosody, 

this distinction did not play a major role in the meta-analysis. Only one model, intensity, was 

credibly improved by adding prosody type, but credibility intervals were still so large that these 

results were difficult to interpret with any confidence. Furthermore, measures of intensity can be 

difficult to compare across studies, as this feature can be greatly affected by the methods and 
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materials used in data collection. Although RHD has been at times associated with changes in 

emotional rather than linguistic prosody (for a brief review see (Kotz et al., 2003)), our strongest 

finding was from a feature only measured in studies investigating linguistic prosody. Whether this 

feature would also be affected in the context of emotional prosody is unknown. 

   When evaluating these results, it is important to keep a few points in mind. First, the 

studies included in the present meta-analysis are group-level analyses, and do not report pre- vs. 

post-trauma data within individuals. Second, because of the lack of available information on lesion 

location, we have considered the hemisphere as the unit of analysis. This reflects the literature, 

which has not always been able to make more fine-grained distinctions, although these would 

undoubtedly paint a more accurate picture. Finally, although the papers we have included in our 

analysis report unidimensional measures of prosody, it should be noted that different acoustic 

measures can be used to similar effect. For example, emotions can be indicated by modulating 

pitch, intensity, pauses, or all three. By systematically reviewing the literature, we were able to 

identify these cautions, which should be kept in mind for future studies (e.g. including more precise 

reports of lesion location). Further, despite these cautions, it is important to evaluate the existing 

data within a meta-analytic framework, not only to estimate baseline effect sizes, but also to allow 

the selection of informed priors for future analyses, thus cumulatively incrementing our knowledge 

of prosody in RHD (Cumming, 2014; Gelman, Jakulin, Pittau, & Su, 2008; Williams, Rast, & 

Bürkner, 2018).  

A common finding for all features was that effect sizes were relatively small. Although 

variation in intensity had a large estimated effect size of -2.225, this estimate seems unlikely to be 

very reliable. The most robust estimated effect size, pause duration, was at best of medium size 

(Hedges g: -0.593). Another common finding was that sample sizes were quite small, with a mean 

N of 12.16 (SD: 10.05). These small samples lead to poor estimates, both within each study, and 

when attempting to combine studies. Figure 1, showing estimated effect sizes for variation in F0 

illustrates this clearly. In this figure, the two studies with the largest sample sizes (Guranski & 

Podemski (2015) with an N of 46, and Ross & Monnot (2008) with an N of 21) have the most 

normal-shaped estimated posterior distributions, whereas a study like Balan and Gandour (1999), 

with an N of 8 has a posterior distribution whose probability mass is spread out over a wide area. 

Although other factors are also at play, these small sample sizes make it difficult to make a reliable 

estimate of the true effect size. 
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The majority of the studies analyzed include 10 or fewer patients, plausibly due to the 

difficulty in accessing clinical populations. However, with such small sample size one would need a 

standardized mean difference (effect size) of 1.7 or more to reach a 95% power (calculations 

relying on G*Power (Erdfelder, Faul, & Buchner, 1996)) at which effect size estimates are reliable. 

This is clearly not the case for the acoustic features we have analyzed. 

While including as varied a sample as possible is an unavoidable concern, there are 

strategies to reduce the sample size needed. For instance, one could employ repeated measures, that 

is, collecting repeated voice samples over time. Using even just 3 repeated measures per participant 

reduces the required underlying effect size from 1.7 to 1 (assuming the participants are still 

representative of the full population). Repeated measures are also very useful to better understand 

the reliability of the acoustic patterns over re-testing and potentially across different contexts. In 

particular, we have seen that linguistic and emotional prosody might not be as different as expected, 

but without a controlled within-subject contrast it is difficult to assess whether this is due to other 

confounds in the sample and study design. 

At the same time, we recognize that it can be difficult to achieve large sample sizes, 

particularly when working with clinical populations. Collecting data from these participants 

involves not only finding participants who meet the inclusion criteria, but also requires making 

demands on the sometimes already taxed time and attention of the participants and their families or 

clinical staff. It is therefore all the more important that when data on communication disorders are 

collected, that they be shared so that other researchers can build on them, and so that the impact that 

each participant can have by donating their time to participation in research can be extended 

(MacWhinney, Fromm, Rose, & Bernstein Ratner, 2018). This can be e.g. by contributing data to 

resources such as RHDBank, a part of the TalkBank system (Macwhinney et al., 2011). Similar 

prosody and voice-quality datasets can already be found for e.g. Autism Spectrum Disorder 

(Schuller et al., 2013), Parkinson’s Disease (Tsanas, Little, McSharry, & Ramig, 2010), and 

Depression (Cummins et al., 2015).  Although data protection legislation may make this type of 

data sharing more difficult, it is important that researchers adapt their practices and find ways to 

responsibly and legally share data, to the extent possible. 

A related issue is the importance of making analysis code publicly available. The 

researchers whose work we have drawn on in the present meta-analysis have used a variety of 

methods to extract values for acoustic features, and to calculate statistics based on those values. By 

using publicly-available, open source tools such as COVAREP (Degottex, Kane, Drugman, Raitio, 
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& Scherer, 2014) and by making in-house extraction algorithms or analysis code available, 

researchers can leave a trail for future researchers to follow and systematically build on their 

findings. An additional advantage of automated tools is the large number of acoustic features which 

can be extracted. While earlier researchers needed to manually extract e.g. pitch curves from 

spectrograms, automated tools can rapidly extract a wide variety of acoustic features from many 

sound files.  

Data and analysis code from the present meta-analysis are both available at: 

https://osf.io/2g8fr/?view_only=81ffc526d83c4389b5b4fc073c2c922a. We make these available 

not only in the interest of transparency, but also as a tool for future research. Like all meta-analyses, 

our results reflect choices about which data to include and to exclude. We have attempted to be as 

clear as possible about our choices, but recognize that other authors might choose to analyse the 

data differently. As an example, if a future researcher is interested in studying variation in intensity 

in people with RHD, not only can they refer to this article for a meta-analytic estimate of effect 

size, they can also use the provided data and code to re-run the analysis themselves, and could 

choose, for instance, to exclude the study by Hird and Kirsner (2003), on the grounds that it reports 

data from free conversation, while they are interested in noun-noun compounds. 

 Finally, where possible, it will be important for future researchers to collect as accurate 

localisation data as possible. In the papers we have included in the meta-analysis, patients are often 

simply classified as having suffered a right CVA, without further specification. While it may be 

possible to make general claims about right- vs. left-hemisphere processes, it is also likely that the 

data we have analysed here have been muddied by including patients with very different lesion 

locations and sizes. Some patients may have anterior damage, some posterior, some may have 

cerebellar or subcortical damage, while others may have fairly restricted cortical lesions. These 

differences undoubtedly have an impact on the production of prosody, and future attempts to 

understand the localization of systems supporting prosody production will need more fine-grained 

information on lesion location. 

 

 In sum, our recommendations for future research are: 

1. Counteract small sample sizes by making data publicly available in repositories, with the 

necessary cautions due to anonymization and data protection, or at the least share extracted 

acoustic features. 
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2. Make feature-extraction and analysis code available for reproducibility and easier 

comparison of data. Use standardized acoustic extraction, at least as a baseline to facilitate 

comparison with previous results. 

3. When possible, include precise information on lesion location. 

5. Conclusions 

In this meta-analysis, we employed hierarchical Bayesian meta-analysis to evaluate the effect of 

right-hemisphere damage on prosodic production, as measured by acoustic analysis. Taken 

together, the results did not strongly support the claim that prosodic production is markedly 

different in people with RHD when compared with NBD controls. We found some evidence for a 

reduction in variability of F0 in RHD, and substantial evidence (albeit from a small number of 

studies) for a decrease in pause duration in RHD. This decrease in pause duration was primarily 

based on studies comparing the linguistic prosody distinguishing noun-noun compounds from noun 

phrases. Although we found studies spanning nearly 30 years measuring acoustic features of 

prosodic production in RHD, there is still relatively little data available to draw any strong 

conclusions. This situation could be aided by increased attention to algorithmic feature extraction 

and open data sharing. 
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